29. Cycloalkylations of \boldsymbol{N}-(ω-Halogenoalkyl)-substituted Macrocyclic Imides
 by Vassil I. Ognyanov ${ }^{1}$) and Manfred Hesse*
 Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(11.XII.89)

Abstract

With ω-halogenoalkyl isocyanates, 2-oxocyclododecane-1-carbonitrile is transformed under ring enlargement to 1-(ω-halogenoalkyl)-2,14-dioxo-1-azacyclotetradecane-3-carbonitriles. In the presence of base, these products undergo O - or C-alkylation leading to bicyclic compounds. The C-alkylation product 7 undergoes solvolysis to form a sixteen-membered ring compound.

In [1], we have presented the preliminary results of the one-step ring enlargement of 2 -oxocycloalkane-1-carbonitriles and -1-carboxylates into macrocyclic imides. As substrates, p-toluenesulfonyl, aryl, and vinyl isocyanates were used, since it is known that electron-attracting groups may enhance the reactivity of the azomethine moiety of the isocyanate towards nucleophilic reagents [2]. To expand the synthetic scope of this new ring-enlargement reaction, we were interested in investigating the reactivity of 'unactivated' alkyl isocyanates.

We found that the sodium salt of 2-oxocyclododecane-1-carbonitrile (1) [3] reacted with benzyl isocyanate (2a) or butyl isocyanate (2b) at 20° for 1 h to give, after acidic workup, the N-substituted cyclic imides 3a and $\mathbf{3 b}$ in 75 and 72% yield, respectively (Scheme 1). Under the same conditions, 1 reacted chemoselectively with 3-chloropropyl isocyanate (4) to give the corresponding ring-enlarged product 5 in 74% yield. The ease of formation of the imides $\mathbf{3 a}, \mathbf{3 b}$, and $\mathbf{5}$ indicates that alkyl isocyanates are sufficiently reactive substrates in the ring-enlargement reaction of 2-oxocycloalkane-1-carbonitriles.

It is known that cycloalkylation of ω-halogenoalkyl-substituted active methylene compounds proceeds under basic conditions, and is a convenient method for the preparation of carbo- and heterocycles [4-6]. Thus, the presence of the chloroalkyl side chain in the imide 5 would allow the initially formed sodium enolate of 5 to undergo such an intramolecular nucleophilic substitution. However, we could not detect any cycloalkylation products in the crude reaction mixture of 5 , probably because of the short reaction time. Therefore, 5 was treated with excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMSO [4] at 20° for 10 h , and the

[^0]Scheme 1

a) $\mathrm{NaH} / \mathrm{THF}$. b) $\mathrm{H}_{2} \mathrm{O}$. c) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 20^{\circ}$. d) $\mathrm{EtOH} / 46 \mathrm{~h}$ reflux.
expected products of O - and C-alkylation 6 and 7 were obtained in 19 and 65% yield, respectively (Scheme 1).

On the other hand, when 1 was treated with the homologous 4-bromobutyl isocyanate (8) [7] at 20° for $1 \mathrm{~h}, 9$ was obtained in 61% yield, together with small amounts of the O-alkylation product 10 (Scheme 2). Unexpectedly, the cycloalkylation of 9 with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMSO proceeded faster (3 h at 20°) than in the case of 5 , giving, however, only the O-alkylation product 10 in 79% yield. Similar selectivity was observed in the reaction of 1 with the homologous 2-chloroethyl isocyanate (11). Under the ring-enlargement conditions, imide 12 and the O-alkylation product 13 were obtained in 45 and 4% yield, respectively (Scheme 2). Further treatment of $\mathbf{1 2}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMSO at 20° for 2 h gave again only 13 in 65% yield, without any traces of the corresponding C-alkylation product ${ }^{2}$).

[^1]Scheme 2
a) $\mathrm{NaH} / \mathrm{THF}$. b) $\mathrm{H}_{2} \mathrm{O}$. c) $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMSO, 20°.

The reactivity of 2-oxocyclododecane-1-carbonitrile (1) towards ω-halogeno-substituted alkyl isocyanates has some resemblances to the so-called 'Michael-initiated ring closure' principle [8] which represents a conjugate addition of a nucleophile to an α, β-unsaturated ester or ketone, followed by intramolecular alkylation of the intermediate enolate. In our case, the ring closure is preceeded by a ring enlargement induced by nucleophilic addition of $\mathbf{1}$ to the imino moiety of the isocyanate which forms the corresponding enolate (see Scheme I). The observed reaction path could be explained with the faster formation of a four-membered cyclic intermediate ($c f$. Scheme I) leading to ring enlargement as compared to the competitive intramolecular alkylation of the initially formed adduct of $\mathbf{1}$ and isocyanate.

The smooth preparation of the bicyclic compound 7, possessing an imide function, prompted us to investigate its behavior towards nucleophilic reagents. Nucleophilic addition to the $\mathrm{C}=\mathrm{O}$ group of the bridge could induce cleavage of the $\mathrm{N}-\mathrm{CO}$ bond with formation of the ring-enlarged product [9]. Indeed, in a preliminary experiment, we found that the solvolysis [10] of 7 with absolute EtOH gave the 16 -membered (ethoxycarbonyl)substituted lactam 14 in 63% yield (Scheme I).

The results presented above show that the ring enlargement of 2-oxocycloalkane-1carbonitriles into macrocyclic imides is not restricted to a specific structure of the isocyanate and may have more general synthetic application.

The support of this work by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung is thankfully acknowledged.

Experimental Part

General. See [1].

1. Reaction of 2-Oxocyclododecane-1-carbonitrile (1) with the Alkyl Isocyanates 2a, 2b, 4, 8, or 11. To a suspension of $\mathrm{NaH}(6 \mathrm{mmol})$ in dry THF (50 ml) $\mathbf{1}(5 \mathrm{mmol})$ was added under stirring in small portions and the resulting mixture was stirred at 20° for 30 min . After dropwise addition of $\mathbf{2 a}, \mathbf{2 b}, \mathbf{4}, \mathbf{8}$, or $\mathbf{1 1}(6 \mathrm{mmol})$, stirring was continued for 1 h at 20°, and the solvent evaporated. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{ml})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$ and the combined org. layers separated. The alkaline $\mathrm{H}_{2} \mathrm{O}$ phase was acidified with dil. HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{ml})$. The combined org. extracts were washed with $\mathrm{H}_{2} \mathrm{O}$, dried, evaporated, and the residue was crystalized from a suitable solvent to give 3a, 3b, 5, 9, or 12, resp. Column chromatography ($\mathrm{Et}_{2} \mathrm{O} /$ hexane 1:1) of the combined $\mathrm{Et}_{2} \mathrm{O}$ extracts before acidic workup of 9 or 12 gave $\mathbf{1 0}$ or $\mathbf{1 3}$, resp.

1-Benzyl-2,14-dioxo-1-azacyclotetradecane-3-carbonitrile (3a). Yield 75\%. M.p. 67-69 (EtOH). IR: 2254, 1704, $1498 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 7.50-7.10\left(\mathrm{~m}, 5\right.$ arom. H); $5.09,4.85\left(A B, J=17,2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 5.03(d d, J=9,5, \mathrm{H}-\mathrm{C}(3))$; $2.74(d d d, J=16,10,3,1 \mathrm{H}-\mathrm{C}(13)) ; 2.38(d d d, J=16,7,3,1 \mathrm{H}-\mathrm{C}(13)) ; 2.00-1.10(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 177.2(s$, $\mathrm{C}(2)) ; 170.3(\mathrm{~s}, \mathrm{C}(14)) ; 136.0\left(\mathrm{~s}, 1\right.$ arom. C); 129.0, 127.9, $126.5\left(3 \mathrm{~d}, 5\right.$ arom. C); $117.2(\mathrm{~s}, \mathrm{CN}) ; 48.0\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 40.4$ (d. $\mathrm{C}(3)) ; 35.6,30.0\left(2 \mathrm{CH}_{2}\right) ; 25.8(2 t) ; 25.7,25.1,24.4,24.1,24.0,23.6\left(6 \mathrm{CH}_{2}\right) . \mathrm{CI}-\mathrm{MS}: 341\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ (340.46): C 74.08, H 8.29, N 8.23; found: C 74.06, H 8.12, N 8.23.

1-Butyl-2,14-dioxo-1-azacyclotetradecane-3-carbonitrile (3b). Yield 72%. M.p. $50-51^{\circ}$ (hexane). IR: 2250 , 1692. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 4.93(d d, J=8,5, \mathrm{H}-\mathrm{C}(3)) ; 3.67\left(t, J=8,2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 2.80-2.40(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(13)) ; 2.30-1.20(\mathrm{~m}$, $22 \mathrm{H}) ; 0.96\left(t, J=7, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 176.9(s, \mathrm{C}(2)) ; 169.8(\mathrm{~s}, \mathrm{C}(14)) ; 117.3(\mathrm{~s}, \mathrm{CN}) ; 45.1\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 40.3(d, \mathrm{C}(3))$; 35.1, 31.3, $29.9\left(3 \mathrm{CH}_{2}\right) ; 25.9\left(2 \mathrm{CH}_{2}\right) ; 25.7,25.1,24.3,24.1,24.0,23.8,20.0\left(7 \mathrm{CH}_{2}\right) ; 13.6\left(q, \mathrm{CH}_{3}\right)$. EI-MS: $306(8$, $\left.M^{+}\right), 251(12), 209(15), 153(16), 142(20), 112(25), 98(81), 83\left(30,55(98), 41(100)\right.$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$ (306.45): C 70.55, H 9.87, N 9.14; found: C 70.43, H 9.86, N 9.30.

1-(3'-Chloropropyl)-2,14-dioxo-1-azacyclotetradecane-3-carbonitrile (5). Yield 74%. M.p. $64-66^{\circ}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$) EtOH). IR: 2250, 1704. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 4.94(d d, J=8,4, \mathrm{H}-\mathrm{C}(3)) ; 3.86\left(t, J=8,2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 3.61(t, J=6$, $2 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$) ; $2.80(d d d, J=16,10,3,1 \mathrm{H}-\mathrm{C}(13)) ; 2.57(d d d, J=16,6,3,1 \mathrm{H}-\mathrm{C}(13)) ; 2.20-1.00(m, 20 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: 176.7(s, \mathrm{C}(2)) ; 170.0(s, \mathrm{C}(14)) ; 117.1(s, \mathrm{CN}) ; 43.1,42.0\left(2 \mathrm{CH}_{2}\right) ; 40.2(d, \mathrm{C}(3)) ; 35.2,31.6,29.8,25.8$, $25.7,25.5,25.1,24.3,24.0,23.9,23.7\left(11 \mathrm{CH}_{2}\right)$. CI-MS: $329,327\left([M+1]^{+}\right), 291\left([M-\mathrm{Cl}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{2}$ (326.86): C 62.47, H 8.33, N 8.57 ; found: C $62.34, \mathrm{H} 8.39$, N 8.71 .

1-(4'-Bromobutyl)-2,14-dioxo-1-azacyclotetradecane-3-carbonitrile (9). Yield 61%. M.p. $62-64^{\circ}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ hexane). IR: 2255, $1698 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 4.93(d d, J=8,5, \mathrm{H}-\mathrm{C}(3)) ; 3.71\left(t, J=8,2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 3.44\left(t, J=6,2 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$; $2.74(d d d, J=14,10,3,1 \mathrm{H}-\mathrm{C}(13)) ; 2.52(d d d, J=16,8,3,1 \mathrm{H}-\mathrm{C}(13)) ; 2.10-1.10(\mathrm{~m}, 22 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 176.7(\mathrm{~s}$, $\mathrm{C}(2)) ; 169.9(s, \mathrm{C}(14)) ; 117.2(s, \mathrm{CN}) ; 44.2\left(t, \mathrm{C}\left(\mathrm{I}^{\prime}\right)\right) ; 40.3(d, \mathrm{C}(3)) ; 35.2,32.7,29.9,29.6,27.7,25.9,25.8,25.7,25.1$, $24.4,24.0,23.9,23.8\left(13 \mathrm{CH}_{2}\right)$. EI-MS: 386, $384\left(8,8, M^{+}\right), 306\left(48,[M-\mathrm{Br}]^{+}\right), 127(28), 113$ (42), $99(98), 83$ (38), 70 (28), 56 (100), 42 (81). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{2}$ (385.34): C 56.11, H 7.59, N 7.27; found: C 56.33, H 7.72, N 7.38 .

1-(2-Chloroethyl)-2,14-dioxo-1-azacyclotetradecane-3-carbonitrile (12). Yield 45% M.p. $98-99^{\circ}$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}\right)$. IR: 2255, 1702 . ${ }^{1} \mathrm{H}-\mathrm{NMR}: 4.96(d d, J=9,4, \mathrm{H}-\mathrm{C}(3)) ; 4.04\left(t, J=6,2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 3.75(t, J=6$, $2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$) $2.90(d d d, J=16,10,3,1 \mathrm{H}-\mathrm{C}(13)) ; 2.62(d d d, J=16,6,3,1 \mathrm{H}-\mathrm{C}(13)) ; 2.10-1.10(m, 18 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}: 176.7(s, \mathrm{C}(2)) ; 170.3(s, \mathrm{C}(14)) ; 117.0(s, \mathrm{CN}) ; 46.5,41.7\left(2 \mathrm{CH}_{2}\right) ; 40.3(d, \mathrm{C}(3)) ; 35.3,30.0,26.0,25.8$, 25.7, 25.0, $24.4\left(7 \mathrm{CH}_{2}\right) ; 24.0\left(2 \mathrm{CH}_{2}\right) ; 23.5\left(\mathrm{CH}_{2}\right)$. EI-MS: 314/312 (1/4, $\left.M^{+}\right), 277\left(4,[M-\mathrm{Cl}]^{+}\right), 188$ (14), 149 (14), 126 (14), 112 (30), 98 (100), 84 (23), 69 (25), 56 (63), 42 (76). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{2}$ (312.84): C 61.43 , H 8.06, N 8.96; found: C 61.44, H 7.86, N 8.98.

2-Oxo-15-oxa-1-azabicyclo[12.5.0]nonadec-13-ene-13-carbonitrile (10). Yield 17%. M.p. $81-83^{\circ}$ (hexane). IR: 2210, 1688, 1682, 1640. ${ }^{1} \mathrm{H}$-NMR: $4.72(d$-like $m, 1 \mathrm{H}) ; 4.38-4.20(d$-like $m, 1 \mathrm{H}) ; 3.86(t, J=12,1 \mathrm{H})$; $2.80-2.34(m, 4 \mathrm{H}) ; 2.20-2.02(m, 1 \mathrm{H}) ; 2.00-1.10(20 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 172.2(s, \mathrm{C}(2)) ; 160.8(s, \mathrm{C}(14)) ; 118.6(s, \mathrm{CN})$; 88.2 (s, C(13)); $69.8(t, \mathrm{C}(16)) ; 46.9(t, \mathrm{C}(19)) ; 31.8,28.5,26.7,26.6,26.2,25.3,25.2,25.1,24.6,23.4\left(10 \mathrm{CH}_{2}\right) ; 23.1$ $\left(2 \mathrm{CH}_{2}\right)$. CI-MS: $305\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ (304.43): C 71.02, H 9.27, N 9.20; found: C 71.22, H 9.34, N 9.19.

2-Oxo-15-oxa-1-azabicyclo[12.3.0]heptadec-13-ene-13-carbonitrile (13). Yield 4\%. M.p. 90-92 $\left(\mathrm{Et}_{2} \mathrm{O}\right.$ /hexane). IR: 2205, 1698, $1658 .{ }^{1} \mathrm{H}$-NMR : $4.68(d d d, J=12,8,1.4,0.5 \mathrm{H}) ; 4.33(d t, J=8,1.4,1 \mathrm{H}) ; 4.06-3.88(\mathrm{~m}$, $0.5 \mathrm{H})$; 3.84-3.36 ($m, 1.5 \mathrm{H}$); $3.12(\mathrm{dt}, J=14.6,8.3,0.5 \mathrm{H}) ; 2.66-2.38(\mathrm{~m}, 1 \mathrm{H}-\mathrm{C}(3)) ; 2.34-2.16(\mathrm{~m}, 1 \mathrm{H}-\mathrm{C}(3))$; $2.10-1.00(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 172.7(\mathrm{~s}, \mathrm{C}(2)) ; 158.9(\mathrm{~s}, \mathrm{C}(14)) ; 119.2(\mathrm{~s}, \mathrm{CN}) ; 75.4(\mathrm{~s}, \mathrm{C}(13)) ; 65.9(t, \mathrm{C}(16)) ; 45.8$ (t, C(17)); 31.5, 26.1, 26.0, 25.3, 25.1, 24.0, 23.7, 23.1, 23.0, $22.6\left(10 \mathrm{CH}_{2}\right)$. EI-MS: $276\left(10, M^{+}\right), 207$ (6), 193 (4), 179 (26), $165(11), 152(9), 123(100), 110(14), 98(70), 80(22), 56(21), 42(33)$. Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}(276.38)$: C 69.53, H 8.75, N 10.14; found: C 69.42, H 8.89, N 10.19.
2. General Procedure for Cycloalkylation of the Imides 5, 9, or 12 to the Bicyclic Compounds 6, 7, 10, and 13. A mixture of 5,9 , or $12(2 \mathrm{mmol})$, finely powdered anh. $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{mmol})$, and DMSO $(2 \mathrm{ml})$ was stirred at 20° for the required time, and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$, the combined org. phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried, and evaporated. The residue was purified by column chromatography or crystallized from a suitable solvent.

2-Oxo-15-oxa-1-azabicyclo[12.4.0]octadec-13-ene-13-carbonitrile (6) and 2.7-Dioxo-1-azabicyclo[11.3.1]-heptadecane-13-carbonitrile (7). Reaction time 10 h . Column chromatography with $\mathrm{Et}_{2} \mathrm{O} /$ hexane $1: 1$ (7 faster moving).

Data of 6: Yield 19%. M.p. 61-63 (hexane). IR: 2210, 1688, 1644. ${ }^{1} \mathrm{H}-\mathrm{NMR}: 4.49(d t, J=13,9,1 \mathrm{H})$; $4.34-4.18(\mathrm{~m}, 1 \mathrm{H}) ; 3.97(d t, J=5,10,1 \mathrm{H}) ; 3.30-3.12(\mathrm{~m}, 1 \mathrm{H}) ; 2.91(d d d, J=14,10,7,1 \mathrm{H}) ; 2.57(d d d, J=14,10$, $4,1 \mathrm{H}-\mathrm{C}(3)) ; 2.38(d d d, J=14,10,4,1 \mathrm{H}-\mathrm{C}(3)) ; 2.22-2.00(\mathrm{~m}, 3 \mathrm{H}) ; 2.00-1.06(\mathrm{~m}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 172.9(s$, $\mathrm{C}(2)) ; 158.7(s, \mathrm{C}(14)) ; 118.7(\mathrm{~s}, \mathrm{CN}) ; 87.5(\mathrm{~s}, \mathrm{C}(13)) ; 65.9(t, \mathrm{C}(16)) ; 40.2(t, \mathrm{C}(18)) ; 31.0,26.7,26.2,25.6,25.5,24.7$, 24.4, 24.1, 23.4, 22.9, $22.8\left(11 \mathrm{CH}_{2}\right)$. CI-MS: $291\left([M+1]^{+}\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}(290.41)$: C 70.31, H 9.02, N 9.65; found: C 70.38, H 9.06, N 9.56.

Data of 7 : Yield 65%. M.p. $112-113^{\circ}(\mathrm{EtOH})$. IR: 2240, $1704 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 3.86-3.62(\mathrm{~m}, 1 \mathrm{H}-\mathrm{C}(16)) ; 3.54-3.30$ $(m, 1 \mathrm{H}-\mathrm{C}(16)) ; 2.60-2.30(m, 1 \mathrm{H}-\mathrm{C}(3)) ; 2.24-1.80(m, 3 \mathrm{H}) ; 1.70-1.10(m, 20 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 176.9(s, \mathrm{C}(17)$); $169.8(s, \mathrm{C}(2)) ; 120.0(s, \mathrm{CN}) ; 48.4(s, \mathrm{C}(13)) ; 45.1,38.3,37.8,33.2,26.2,25.8\left(6 \mathrm{CH}_{2}\right) ; 25.5\left(2 \mathrm{CH}_{2}\right) ; 24.4,23.3,23.2$, 22.2, $19.3\left(5 \mathrm{CH}_{2}\right)$. CI-MS: $291\left([M+1]^{+}\right), 264\left([M-\mathrm{CN}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}(290.40): \mathrm{C} 70.31$, H 9.02, N 9.65; found: C 70.11, H 9.21, N 9.56.

Compound 10 from 9 . Yield 79%. Identical with 10 from Exper. 1 (mixed m.p. without depression; spectra superimposable).

Compound 13 from 12. Yield 65%. Identical with 13 from Exper. 1 (mixed m.p. without depression; spectra superimposable).
3. Ethyl 5-Cyano-16-oxo-1-azacyclohexadecane-5-carboxylate (14). A soln. of $7(1.16 \mathrm{~g}, 4 \mathrm{mmol})$ in dry EtOH (10 ml) was refluxed under N_{2} for 46 h . Evaporation and crystallization of the residue from $\mathrm{Et}_{2} \mathrm{O} /$ hexane gave 14 $(0.85 \mathrm{~g}, 63 \%)$. M.p. $63-64^{\circ}$. IR: $3210,3090,2235,1748,1682 .{ }^{1} \mathrm{H}-\mathrm{NMR}: 6.68$ (br. s, NH, exchangeable with $\mathrm{D}_{2} \mathrm{O}$); $4.13\left(q, J=7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.54-3.24(\mathrm{~m}, 2 \mathrm{H}) ; 2.40-1.20(\mathrm{~m}, 27 \mathrm{H})$, therein t at $2.30(J=7,2 \mathrm{H})$ and t at 1.26 $\left(J=7, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}: 173.8(s, \mathrm{CO}) ; 167.5(s, \mathrm{CO}) ; 120.6(s, \mathrm{CN}) ; 60.0\left(t, \mathrm{CH}_{2} \mathrm{O}\right) ; 43.7(s, \mathrm{C}(13)) ; 42.0,36.1$, $34.3,30.5\left(4 \mathrm{CH}_{2}\right) ; 29.3\left(2 \mathrm{CH}_{2}\right) ; 29.2,29.1,29.0,28.9,24.9,24.5$, $19.1\left(7 \mathrm{CH}_{2}\right) ; 14.2\left(q, \mathrm{CH}_{3}\right)$. CI-MS: 337 $\left([M+1]^{+}\right), 291\left([M-\mathrm{OEt}]^{+}\right)$. Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}(336.47)$: C 67.82, H 9.58, N 8.32; found: C 67.71, H 9.57, N8.15.

REFERENCES

[1] V. I. Ognyanov, M. Hesse, Helv. Chim. Acta 1989, 72, 1522.
[2] S. Ozaki, Chem. Rev. 1972, 72, 457, p. 469.
[3] B. Föhlisch, R. Herter, E. Wolf, J. J. Stezowski, E. Eckle, Chem. Ber. 1982, 115, 355.
[4] N. S. Zefirov, T.S. Kuznetsova, S. I. Kozhushkov, L.S. Surmina, Z. A. Rashchupkina, J. Org. Chem. USSR 1983, 19, 474.
[5] A. C. Knipe, C. J. M. Stirling, J. Chem. Soc. (B) 1968, 67.
[6] A. K. Bose, M.S. Manhas, B. G. Chatterjee, R.F. Abdulla, Synth. Commun. 1971, 1, 51.
[7] H. R. Kricheldorf, Angew. Chem. 1979, 91, 749.
[8] R. D. Little, J. R. Dawson, Tetrahedron Lett. 1980, 21, 2609; R.D. Little, R. Verhé, W. T. Monte, S. Nugent, J. R. Dawson, J. Org. Chem. 1982, 47, 362.
[9] H. Stach, M. Hesse, Tetrahedron 1988, 44, 1573.
[10] V. Gailius, H. Stamm, Arch. Pharm. 1988, 321, 337.

[^0]: ${ }^{1}$) On leave from the Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.

[^1]: ${ }^{2}$) An analogous selective formation of O - or C-cycloalkylation products, depending on the length of the ω-halogenoalkyl side chain, was observed in the case of other enolizeable active methylene compounds [4].

